您好,欢迎访问这里是您的网站名称官网!
新闻资讯

服务热线400-123-4567

行业资讯

首页 > 新闻资讯 > 行业资讯

积分中值定理的推广形式是什么?

作者:佚名 发布时间:2024-08-26 05:23:05点击:
展开全部

1、积分第一中值定理:若f在[a,b]上连续,则至少存在一点c属于[a,b],使得在[a,b]上的积分值等于f(c)(b-a)

推广:若f与g都在[a,b]上连续,且g在[a,b]上不变号,则至少存在一点c属于[a,b],使得f乘以g在[a,b]上的积分等于f(c)乘以g在[a,b]上的积分.

2、积分第二中值定理:设函数f在[a,b]上可积,1:若函数g在[a,b]上递减,且g大于等于0,则存在一点c属于[a,b],使得(f乘以g)在[a,b]上的积分等于g(a)乘以(f在[a,c]上的积分).2:若函数g在[a,b]上递增,且g大于等于0,则存在一点d属于[a,b],使得(f乘以g)在[a,b]上的积分等于g(b)乘以(f在[d,b]上的积分).

推广:设函数f在[a,b]上可积.若g为单调函数,则存在一点c属于[a,b],使得(f乘以g)的积分等于g(a)乘以(f在[a,c]上的积分)加上g(b)乘以(f在[c,b]上的积分)

扩展资料:

积分第二中值定理可以用来证明Dirichlet-Abel
反常 Rieman 积分判别法。

内容:

若f,g在[a,b]上黎曼可积且f(x)在[a,b]上单调,则存在[a,b]上的点ξ使

展开全部

第一定理

如果函数 f(x)、 g(x)在闭区间(a,b)上连续,且 g(x)在(a,b) 上不变号, 则在积分区间(a,b)上至少存在一个点 ,使下式成立:

第二定理

一、如果函数 f(x)、 g(x)在闭区间(a,b) 上可积,且 f(x)为单调函数,则在积分区间(a,b)上至少存在一个点 ,使下式成立:

二、如果函数 f(x)、 g(x)在闭区间(a,b) 上可积,f(x)>=0是单调递减函数,则在积分区间[a,b] 上至少存在一个点 , 使下式成立:

三、如果函数 f(x)、 g(x)在闭区间(a,b) 上可积,f(x)>=0是单调递增函数,则在积分区间[a,b] 上至少存在一个点,使下式成立:

扩展资料

积分中值定理在应用中所起到的重要作用是可以使积分号去掉,或者使复杂的被积函数化为相对简单的被积函数,从而使问题简化。因此,对于证明有关题设中含有某个函数积分的等式或不等式,或者要证的结论中含有定积分,或者所求的极限式中含有定积分时,一般应考虑使用积分中值定理, 去掉积分号,或者化简被积函数。

积分中值定理揭示了一种将积分化为函数值, 或者是将复杂函数的积分化为简单函数的积分的方法, 是数学分析的基本定理和重要手段, 在求极限、判定某些性质点、估计积分值等方面应用广泛。

参考资料百度百科-积分中值定理

展开全部

第一定理

如果函数  、  在闭区间[a,b]上连续,且  在  上不变号, 则在积分区间  上至少存在一个点  ,使下式成立:

第二定理

一、如果函数  、  在闭区间[a,b]上可积,且  为单调函数,则在积分区间 [a,b]上至少存在一个点  ,使下式成立:

二、如果函数  、  在闭区间[a,b]上可积,且  并是单调递减函数,则在积分区间[a,b] 上至少存在一个点  , 使下式成立:

三、如果函数  、  在闭区间 [a,b] 上可积,且  并是单调递增函数,则在积分区间[a,b]  上至少存在一个点  ,使下式成立:

积分中值定理,是一种数学定律。分为积分第一中值定理和积分第二中值定理,它们各包含两个公式。其中,积分第二中值定理还包含三个常用的推论。

扩展资料:

积分中值定理,是一种数学定律。分为积分第一中值定理和积分第二中值定理,它们各包含两个公式。其中,积分第二中值定理还包含三个常用的推论。

积分中值定理揭示了一种将积分化为函数值, 或者是将复杂函数的积分化为简单函数的积分的方法, 是数学分析的基本定理和重要手段, 在求极限、判定某些性质点、估计积分值等方面应用广泛。

积分中值定理在应用中所起到的重要作用是可以使积分号去掉,或者使复杂的被积函数化为相对简单的被积函数,从而使问题简化。

因此,对于证明有关题设中含有某个函数积分的等式或不等式,或者要证的结论中含有定积分,或者所求的极限式中含有定积分时,一般应考虑使用积分中值定理, 去掉积分号,或者化简被积函数。

参考资料:百度百科-积分中值定理

展开全部

第一定理

如果函数  、  在闭区间[a,b]上连续,且  在  上不变号, 则在积分区间  上至少存在一个点  ,使下式成立:

第二定理

一、如果函数  、  在闭区间[a,b]上可积,且  为单调函数,则在积分区间 [a,b]上至少存在一个点  ,使下式成立:

二、如果函数  、  在闭区间[a,b]上可积,且  并是单调递减函数,则在积分区间[a,b] 上至少存在一个点  , 使下式成立:

三、如果函数  、  在闭区间 [a,b] 上可积,且  并是单调递增函数,则在积分区间[a,b]  上至少存在一个点  ,使下式成立:

积分中值定理,是一种数学定律。分为积分第一中值定理和积分第二中值定理,它们各包含两个公式。其中,积分第二中值定理还包含三个常用的推论。

积分中值定理揭示了一种将积分化为函数值, 或者是将复杂函数的积分化为简单函数的积分的方法, 是数学分析的基本定理和重要手段。

在求极限、判定某些性质点、估计积分值等方面应用广泛。

定理应用:求极限、问题应用、运用估计、不等式证明。

相关标签: 积分 函数

平台注册入口